A Multi-Stage Framework for Dantzig Selector and LASSO

نویسندگان

  • Ji Liu
  • Peter Wonka
  • Jieping Ye
چکیده

We consider the following sparse signal recovery (or feature selection) problem: given a design matrix X ∈ Rn×m (m ≫ n) and a noisy observation vector y ∈ Rn satisfying y = Xβ∗ + ε where ε is the noise vector following a Gaussian distribution N(0,σ2I), how to recover the signal (or parameter vector) β∗ when the signal is sparse? The Dantzig selector has been proposed for sparse signal recovery with strong theoretical guarantees. In this paper, we propose a multi-stage Dantzig selector method, which iteratively refines the target signal β∗. We show that if X obeys a certain condition, then with a large probability the difference between the solution β̂ estimated by the proposed method and the true solution β∗ measured in terms of the lp norm (p ≥ 1) is bounded as ‖β̂−β‖p ≤ (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DASSO: Connections Between the Dantzig Selector and Lasso

We propose a new algorithm, DASSO, for fitting the entire coefficient path of the Dantzig selector with a similar computational cost to the LARS algorithm that is used to compute the Lasso. DASSO efficiently constructs a piecewise linear path through a sequential simplex-like algorithm, which is remarkably similar to LARS. Comparison of the two algorithms sheds new light on the question of how ...

متن کامل

The Dantzig Selector in Cox’s Proportional Hazards Model

The Dantzig Selector is a recent approach to estimation in high-dimensional linear regression models with a large number of explanatory variables and a relatively small number of observations. As in the least absolute shrinkage and selection operator (LASSO), this approach sets certain regression coefficients exactly to zero, thus performing variable selection. However, such a framework, contra...

متن کامل

Stability Analysis of LASSO and Dantzig Selector via Constrained Minimal Singular Value of Gaussian Sensing Matrices

In this paper, we introduce a new framework for interpreting the existing theoretical stability results of sparse signal recovery algorithms in practical terms. Our framework is built on the theory of constrained minimal singular values of Gaussian sensing matrices. Adopting our framework, we study the stability of two algorithms, namely LASSO and Dantzig selector. We demonstrate that for a giv...

متن کامل

The Double Dantzig

The Dantzig selector (Candes and Tao, 2007) is a new approach that has been proposed for performing variable selection and model fitting on linear regression models. It uses an L1 penalty to shrink the regression coefficients towards zero, in a similar fashion to the Lasso. While both the Lasso and Dantzig selector potentially do a good job of selecting the correct variables, several researcher...

متن کامل

Transductive versions of the LASSO and the Dantzig Selector

Transductive methods are useful in prediction problems when the training dataset is composed of a large number of unlabeled observations and a smaller number of labeled observations. In this paper, we propose an approach for developing transductive prediction procedures that are able to take advantage of the sparsity in the high dimensional linear regression. More precisely, we define transduct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012